Mathematics Geometry: Year at a Glance

Q2

2018 - 2019

Q3

/			/
Aug. 6 – Oct. 5	Oct. 16 - Dec. 19	Jan. 7 – Mar. 8	Mar. 18 – May 24 TN Ready Testing Apr. 22 - May23
Tools of Geometry, Reasoning and Proof, Transformations and Congruence, Transformations and Symmetry, Lines and Angles	Triangle Congruence with Applications, Properties of Triangles, Special Segments in Triangles, Properties of Quadrilaterals with Coordinate Proofs	Similarity and Transformations, Using Similar Triangles, Trigonometry with Right Triangles, Trigonometry with All Triangles, Properties of Angles and Segments in Circles	Properties of Circles, Arc Length, Sector Area, and Equations of Circles, Measurement and Modeling in Two and Three Dimensions, Volume Formulas, Visualizing Solids, Trigonometry with All Triangles
G.CO.A.1	G.CO.B.7	G.CO.A.1	G.CO.D.12
G.CO.A.2	G.CO.B.8	G. SRT.A.1	G.C.A.2
G.CO.A.3	G.CO.C.10	G. SRT.A.2	G.C.A.3
G.CO.A.4	G.CO.C.11	G. SRT.A.3	G.C.B.4
G.CO.A.5	G.CO.D.12	G. SRT.B.4	G. GPE.A.1
G.CO.B.6	G. SRT.B.4	G. SRT.B.5	G. GPE.B.2
G.CO.B.7	G. SRT.B.5	G. SRT.C.6	G. GPE.B.3
G.CO.C.9	G. GPE.B.2	G. SRT.C.7	G. GPE.B.4
G.CO.D.12	G. GPE.B.5	G. SRT.C.8	G.MG.A.1
G. GPE.B.2	G.MG.A.1	G. MG.A.2	G. MG.A.2
G. GPE.B.3	G.MG.A.2	G. GMD.A.1	G. GMD.A.1
		G.C.A.1	G. GMD.A.2
		G.C.A.2	

Key:

Major Content

Q1

Supporting Content

Note: Please use this suggested pacing as a guide. It is understood that teachers may be up to 1 week ahead or 1 week behind depending on the needs of their students.

Quarter 2

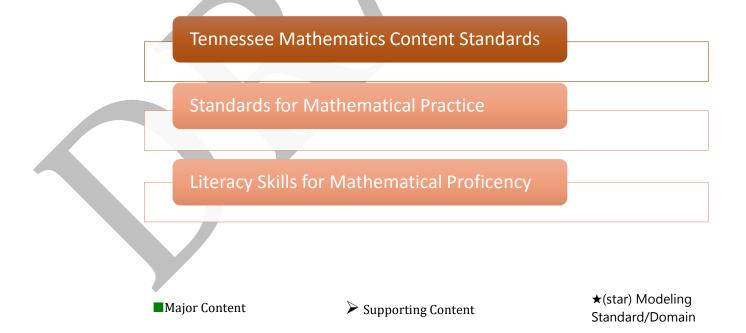
Geometry

Introduction

Destination 2025, Shelby County Schools' 10-year strategic plan, is designed not only to improve the quality of public education, but also to create a more knowledgeable, productive workforce and ultimately benefit our entire community.

What will success look like?

In order to achieve these ambitious goals, we must collectively work to provide our students with high quality, college and career ready aligned instruction. The Tennessee State Standards provide a common set of expectations for what students will know and be able to do at the end of a grade. The State of Tennessee provides two sets of standards, which include the Standards for Mathematical Content and The Standards for Mathematical Practice. The Content Standards set high expectations for all students to ensure that Tennessee graduates are prepared to meet the rigorous demands of mathematical understanding for college and career. The eight Standards for Mathematical Practice describe the varieties of expertise, habits of mind, and productive dispositions that educators seek to develop in all students. The Tennessee State Standards also represent three fundamental shifts in mathematics instruction: focus, coherence and rigor.


Quarter 2

Geometry

The **Standards for Mathematical Practice** describe varieties of expertise, habits of minds and productive dispositions that mathematics educators at all levels should seek to develop in their students. These practices rest on important National Council of Teachers of Mathematics (NCTM) "processes and proficiencies" with longstanding importance in mathematics education. Throughout the year, students should continue to develop proficiency with the eight Standards for Mathematical Practice. The following are the eight Standards for Mathematical Practice:

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of them.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

This curriculum map is designed to help teachers make effective decisions about what mathematical content to teach so that ultimately our students can reach Destination 2025. Throughout this curriculum map, you will see resources as well as links to tasks that will support you in ensuring that students are able to reach the demands of the standards in your classroom. In addition to the resources embedded in the map, there are some high-leverage resources around the content standards and mathematical practice standards that teachers should consistently access. For a full description of each, click on the links below.

SCS 2018/2019 Revised 9/5/18 3 of 18

Geometry

Structure of the Standards

Structure of the TN State Standards include:

• Content Standards - Statements of what a student should know, understand, and be able to do.

Quarter 2

- **Clusters** Groups of related standards. Cluster headings may be considered as the big idea(s) that the group of standards they represent are addressing. They are therefore useful as a quick summary of the progression of ideas that the standards in a domain are covering and can help teachers to determine the focus of the standards they are teaching.
- **Domains** A large category of mathematics that the clusters and their respective content standards delineate and address. For example, Number and Operations Fractions is a domain under which there are a number of clusters (the big ideas that will be addressed) along with their respective content standards, which give the specifics of what the student should know, understand, and be able to do when working with fractions.
- Conceptual Categories The content standards, clusters, and domains in the 9th-12th grades are further organized under conceptual categories. These are very broad categories of mathematical thought and lend themselves to the organization of high school course work. For example, Algebra is a conceptual category in the high school standards under which are domains such as Seeing Structure in Expressions, Creating Equations, Arithmetic with Polynomials and Rational Expressions, etc.

Major Content Supporting Content

SCS 2018/2019 Revised 9/5/18 4 of 18

★(star) Modeling

Quarter 2

Geometry

How to Use the Maps

Overview

An overview is provided for each quarter and includes the topics, focus standards, intended rigor of the standards and foundational skills needed for success of those standards.

Your curriculum map contains four columns that each highlight specific instructional components. Use the details below as a guide for information included in each column.

Tennessee State Standards

TN State Standards are located in the left column. Each content standard is identified as Major Content or Supporting Content. A key can be found at the bottom of the map.

Content

This section contains learning objectives based upon the TN State Standards. Best practices tell us that clearly communicating measurable objectives lead to greater student understanding. Additionally, essential questions are provided to guide student exploration and inquiry.

Instructional Support & Resources

District and web-based resources have been provided in the Instructional Support & Resources columns. You will find a variety of instructional resources that align with the content standards. The additional resources provided should be used as needed for content support and scaffolding. The inclusion of vocabulary serves as a resource for teacher planning and for building a common language across K-12 mathematics. One of the goals for Tennessee State Standards is to create a common language, and the expectation is that teachers will embed this language throughout their daily lessons.

■Major Content	Supporting Content

SCS 2018/2019 Revised 9/5/18 5 of 18

★(star) Modeling

Geometry

Topics Addressed in Quarter

- Triangle Congruence with Applications
- Properties of Triangles
- Special Segments in Triangles
- Properties of Quadrilaterals with Coordinate Proof

Quarter 2

Overview

During the second quarter, students will continue to work with the concept of rigid motion and congruency. They will determine if two triangles are congruent by SSS, SAS, ASA, AAS, or HL and then provide appropriate reasoning for why they are congruent. They also will gain a deeper insight into constructing two-column, paragraph, and coordinate proofs. Students will classify triangles based on its' angles and side measures and determine whether a triangle exists given three side measures and find the range of the third side when given two side measures. Students will compare the sides or angles of a given triangle and apply the Hinge theorem. Students will learn how to find missing angles in triangles both interior and exterior angles. They will investigate the special segments of a triangle; altitude, angle bisector, perpendicular bisector, and median. They will also practice with the points of concurrency; orthocenter, incenter, circumcenter, and centroid. Identifying quadrilaterals using given properties concludes the second quarter. Students should be able to solve equations to find various missing parts of the quadrilaterals as well as write two-column, paragraph and coordinate proofs using definitions and properties.

Content Standard	Type of Rigor	Foundational Standards
G-CO.B.7	Conceptual Understanding	8.G.A.2
G-CO.B.8	Conceptual Understanding	8.G.A.2
G-CO.B.9	Procedural Fluency, Conceptual Understanding	7.G.B.5, 8.G.A.5
G-CO.C.10	Procedural Fluency, Conceptual Understanding & Application	7.G.A.2, 8.G.A.5
G-CO.C.11	Conceptual Understanding	7.G.A.2, 8.G.A.5
G-CO.D.12	Procedural Fluency	7.G.A.2
G-GPE.B.2	Procedural Fluency & Conceptual Understanding	8.G.B.8
G-MG.A.1	Procedural Fluency, Conceptual Understanding & Application	8.G.A.5; 8.G.B.7
G-MG.A.2	Application	8.G.A.5; 8.G.B.7
G-SRT.B.4	Procedural Fluency, Conceptual Understanding	8.G.A.1, 2,3, 4,5
G-SRT.B. 5	Procedural Fluency, Conceptual Understanding & Application	8.G.A.1, 2,3, 4,5

SCS 2018/2019 Revised 9/5/18 6 of 18

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES	
Properties of Triangles and Triangle Congruence with Applications (Allow approximately 3 weeks for instruction, review, and assessment)				
 Domain: Congruence (G.CO) Cluster: Prove geometric theorems <u>G-CO.C.10</u> Prove theorems about triangles. Domain: Congruence_ Cluster: Make geometric constructions <u>G-CO.D.12</u> Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). 	 Essential Question(s) How do the properties of triangles contribute to the geometric understanding of the world around us? Objective(s): Students will identify and classify triangles by angle measure Students will identify and classify triangles by side measure 	Textbook Lesson Lesson 4.1 Classifying Triangles, pp.235-242	Vocabulary acute triangle, equiangular triangle, obtuse triangle, right triangle, equilateral triangle isosceles triangle, scalene triangle Activity with Discussion Pair the categories of classifications of sides of triangles with the categories of classifications of angles to determine which combinations can exist and which ones cannot exist. Explain why certain combinations cannot exist. (Example, can a right equilateral triangle exist?) Error Analysis pg. 241, #56 (H.O.T. Problem)	
 Domain: Congruence (G.CO) Cluster: Prove geometric theorems <u>G-CO.C.10</u> Prove theorems about triangles. Domain: Congruence_ Cluster: Make geometric constructions <u>G-CO.D.12</u> Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). 	 Essential Question(s) What can you say about the interior and exterior angles of a triangle and other polygons? Objective(s): Students will apply the Triangle Angle Sum Theorem Students will prove the measures of interior angles of a triangle have a sum of 180°. 	Textbook Lesson Lesson 4.2 Angles of Triangles, pp. 243-252 Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) Geometry Lab: Angles of Triangles p. 243	 Vocabulary Auxiliary line, exterior angle, remote interior angles, flow proof, corollary Writing in Math Explain in words how to find the measure of a missing angle of a triangle if you know two of the angles. (Have students write this as if they were explaining it to someone who has never taken geometry before.)	

SCS 2018/2019 Revised 9/5/18 7 of 18

★(star) Modeling

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
 Domain: Congruence (G.CO) Cluster: Understand congruence in terms of rigid motion G.CO.B.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. 		Textbook Lesson Lesson 4.3 – Congruent Triangles, pp. 253 – 261 Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) Illustrative Mathematics Properties of Congruent Triangles Task	Vocabulary Congruent, congruent polygons, corresponding parts Writing in Math Determine whether the following statement is <i>always, sometimes,</i> or <i>never</i> true. Explain your reasoning. Equilateral triangles are congruent.
 Domain: Similarity, Right Triangles, and Trigonometry (G.SRT) Cluster: Prove theorems involving similarity <u>G-SRT.B.5</u> Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. Domain: Congruence (G.CO) Cluster: Understand congruence in terms of rigid motions <u>G-CO.B.7</u> Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if 	 Essential Question(s) What does the SAS Triangle Congruence Theorem tell you about triangles? What does the SSS Triangle Congruence Theorem tell you about triangles? Objective(s): Students will use the SSS Postulate to test for triangle congruence. Students will use the SAS Postulate to test for triangle congruence. 	Textbook Lessons Lesson 4.4 Proving Triangles Congruent – SSS, SAS, pp. 262-271 Lesson 4.4 Extension – Geometry Lab: Proving Constructions p. 271 Eureka Math Eureka Math: Geometry Module 1, Topic D, Lesson 22 – Congruence Criteria for Triangles-SAS Optional: Use the following resources to ensure that the intended outcome and level	Vocabulary Included angle Writing in Math Create a chart for triangle congruence theorems (theorem, definition, and picture) highlighting the sides and angles that are congruent in each pair of triangles. Compare and contrast the theorems in your own words. Be sure to include both similarities and differences between the theorems. p. 269 #30, (H.O.T. Problems)

SCS 2018/2019 Revised 9/5/18 8 of 18

★(star) Modeling

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
 and only if corresponding pairs of sides and corresponding pairs of angles are congruent. Domain: Congruence (G.CO) Cluster: Understand congruence in terms of rigid motions <u>G-CO.B.8</u> Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. 	Students will write two-column proofs to show that two triangles are congruent by SSS or SAS.	of rigor of the standards are met. Task(s) Select appropriate tasks from <u>GSE</u> <u>Analytic Geometry Unit 1: Similarity,</u> <u>Congruence and Proofs</u> <u>Investigating Congruence in Terms of Rigid</u> <u>Motion (TN Task Arc)</u>	
 Domain: Similarity, Right Triangles, and Trigonometry (G.SRT) Cluster: Prove theorems involving similarity <u>G-SRT.B.5</u> Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. Domain: Congruence (G.CO) Cluster: Understand congruence in terms of rigid motions <u>G-CO.B.7</u> Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. 	 Essential Question(s) What does the ASA Triangle Congruence Theorem tell you about triangles? What does the AAS Triangle Congruence Theorem tell you about triangles? What does the HL Triangle Congruence Theorem tell you about two triangles? Objective(s): Students will use the ASA Postulate to test for triangle congruence. Students will use the AAS Postulate to test for triangle congruence. Students will explore congruence in right triangles. Students will write formal proofs to show that two triangles are congruent by AAS, ASA or HL. 	Textbook Lesson Lesson 4.5 Proving Triangles Congruent – ASA, AAS. Pp.273-280 Eureka Math Eureka Math: Geometry Module 1, Topic D, Lesson 24 – Congruence Criteria for Triangles – ASA and SSS Eureka Math: Geometry Module 1, Topic D, Lesson 25 – Congruence Criteria for Triangles – ASA and HL Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met.	Vocabulary Included side Writing in Math Explain why identifying two pairs of congruent angles with their included sides congruent is enough to prove that two triangles are congruent.

★(star) Modeling

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
Domain: Congruence (G.CO) Cluster : Understand congruence in terms of rigid motions		Lesson 4.5 Geometry Lab: Congruence in Right Triangles p.281-282	
<u>G-CO.B.8</u> , Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.		Task(s) Select appropriate tasks from GSE Analytic Geometry Unit 1: Similarity, Congruence and Proofs	
Domain: Congruence (G.CO) Cluster : Prove geometric theorems	Essential Question(s)	Textbook Lesson	Vocabulary
 <u>G-CO.C.10</u> Prove theorems about triangles. 	What are the special relationships among angles and sides in isosceles and equilateral triangles?	Lesson 4.6 Isosceles and Equilateral Triangles, pp. 283-291	Pythagorean triple
Domain: Congruence_(G.CO) Cluster: Make geometric constructions → G-CO.D.12_Make formal geometric	Objective(s): Students will use properties of isosceles	Eureka Math Eureka Math: Geometry Module 1, Topic D, Lesson 23 – Base Angles of Isosceles	Writing in Math p. 290 #45 Challenge – proof (H.O.T. problem)
constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).	 triangles. Students will use properties of equilateral triangles. Students will prove base angles of 	Triangles	
Domain: Similarity, Right Triangles, and Trigonometry (G.SRT) Cluster : Prove theorems involving similarity	isosceles triangles are congruent.		
G-SRT.B.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.			
Domain: Congruence (G.CO)	Essential Question(s)	Textbook Lesson	Vocabulary
Cluster : Experiment with transformations in the plane.	What are rigid motions and how can they be defined?	Lesson 4.7 –Congruence Transformations, pp. 294 – 295	Transformation, preimage, image, congruence transformation, isometry, reflection, translation,

★(star) Modeling

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
G.CO.A.2 Represent transformations in the plane in multiple ways, including technology. Describe transformations as functions that take points in the plane(pre- image) as inputs and give other points (image) as outputs. Compare transformations that preserve distance and angle measure to those that do not (e.g., translation versus horizontal stretch).	 Objective(s): Students will identify reflections, translations, and rotations. Students will define rigid motions as reflections, rotations, translations, and combinations of these, all of which preserve distance and angle measure. Students will define congruent figures as figures that have the same shape and size and state that a composition of rigid motions will map one congruent figure onto the other. 	Eureka Math Eureka Math Geometry Module 1, Topic C, Lesson 12 – Transformations—The Next Level	rotation Writing in Math Explain the prefix <i>pre</i> - when discussing <i>pre- image</i> . Explain, give an example and write the rules for the translations and nonrigid motion transformation on a coordinate plane of a reflection, a translation, a rotation and a nonrigid motion transformation.
	Special Segme		
	(Allow approximately 3 weeks for inst	ruction, review, and assessment)	
Domain: Congruence (G.CO)	Essential Question(s)	Textbook Lesson	Vocabulary
Cluster: Prove geometric theorems G-CO.C.10 Prove theorems about	How can you use perpendicular bisectors to find the point that is equidistant from all the vertices	Lesson 5.1 Bisectors of Triangles pp. 321-331	Perpendicular bisector, concurrent lines, point of concurrency, circumcenter, incenter
triangles.	of a triangle?	Eureka Math	
Domain: Modeling with Geometry (G.MG) Cluster: Apply geometric concepts in	How can you use angle bisectors to find the point that is equidistant from all the sides of a triangle?	Eureka Math: Geometry Module 1, Topic A, Lesson 5 – Points of Concurrencies	Writing in Math Compare and contrast the perpendicular bisectors and angle bisectors of a triangle. Be
 modeling situations <u>G-MG.A.2</u> Apply geometric methods to solve real-world problems. ★ 	 Objective(s): Students will identify and use perpendicular bisectors in triangles 	Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met.	sure to include their points of concurrency. Why are the points of concurrency called incenter for angle bisectors of triangles and
	Students will identify and use angle bisectors in triangles.Students will construct the special	Task(s) Centers of Triangles Centers of Triangles Solutions	circumcenter for the perpendicular bisectors?
	segments (perpendicular bisectors and	Centers of Mangles Solutions	

★(star) Modeling

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
	 angle bisectors) in acute, right and obtuse triangles. Students will prove the perpendicular bisectors and the angle bisectors of a triangle meet at a point. 	Hospital Locator Dividing a Town into Pizza Delivery Regions Geometry Lab - Constructing Bisectors p. 321	
Domain: Modeling with Geometry (G.MG)	Essential Question(s)	Textbook Lesson	Vocabulary
Cluster: Apply geometric concepts in modeling situations	How can you find the balance point or center of gravity of a triangle?	Lesson 5.2 Medians and Altitudes of Triangles pp. 332-341	Median, centroid, altitude, orthocenter
G-MG.A.2 Apply geometric methods to solve real-world problems. ★	 Objective(s): Students will identify and use medians in triangles Students will identify and use altitudes in triangles. Students will construct the special segments (medians and altitudes) in acute, right and obtuse triangles. Students will prove the medians and the altitudes of a triangle meet at a point. 	Eureka Math Eureka Math: Geometry Module 1, Topic E, Lesson 30 – Special Lines in Triangles: Medians Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) Select appropriate tasks from <u>GSE</u> . Analytic Geometry Unit 1: Similarity. <u>Congruence and Proofs</u> Geometry Lab - Constructing Medians and Altitudes p. 332 The Centroid of a Triangle	Writing in Math Summarize the special segments of a triangle including their names, properties and diagrams into a chart or booklet.
		Balancing Act	
Domain: Congruence (G.CO) Cluster : Prove geometric theorems	Essential Question(s)	Textbook Lesson	Writing in Math
	How can you use inequalities to describe the	Lesson 5.3 Inequalities in one triangle pp. 342-349	p. 348 #43 & 48 (H.O.T. Problems)

SCS 2018/2019 Revised 9/5/18 12 of 18

★(star) Modeling

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
<u>G-CO.C.10</u> Prove theorems about triangles.	relationships among side lengths and angle measures in a triangle?	Lesson 5.5 The Triangle Inequality Theorem pp.359-366	p. 365 #45 & 48 (H.O.T. Problems)
 Domain: Modeling with Geometry (G.MG) Cluster: Apply geometric concepts in modeling situations G-MG.A.2 Apply geometric methods to solve real-world problems. ★ 	 Objective(s): Students will recognize and apply properties of inequalities to the measures of the angles of a triangle. Students will recognize and apply properties of inequalities to the relationships between the angles and sides of a triangle. 	Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) Graphing Technology Lab - The Triangle Inequality p. 359 <u>Triangle Inequality Task</u>	
Domain: Congruence (G.CO) Cluster: Prove geometric theorems ■ G-CO.C.10 Prove theorems about triangles. Domain: Modeling with Geometry (G.MG) Cluster: Apply geometric concepts in modeling situations ■ G-MG.A.2 Apply geometric methods to solve real-world problems. ★	 Essential Question(s) In what ways can congruence be useful? Objective(s): Students will apply the Hinge Theorem or its converse to make comparisons in two triangles Prove triangle relationships using the hinge theorem or its converse 	Textbook Lesson Lesson 5.6 Inequalities in Two Triangles pp. 367- 376 Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) Inequalities in Two Triangles Activity	Writing in Math Compare and contrast the Hinge Theorem to the SAS Postulate for Triangle Congruence.
 Domain: Similarity, Right Triangles, and Trigonometry (G.SRT) Cluster: Prove theorems involving similarity G-SRT.B.4 Prove theorems about similar triangles. Domain: Similarity, Right Triangles, and Trigonometry 	 Essential Question(s) How are the segments that join the midpoints of a triangle's sides related to the triangle's sides? Objective(s): Students will use proportional parts within triangles. Students will use proportional parts with parallel 	Use the textbook resources to address procedural fluency. Lesson 7.4 Parallel Lines and Proportional Parts (mid- segments of triangles) pp. 484-493 Use the following Lesson(s) to introduce concepts/build conceptual understanding.	Vocabulary mid-segment of a triangle

★(star) Modeling

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
 (G.SRT) Cluster: Prove theorems involving similarity G-SRT.B.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. 	 Students will prove the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length. 	Eureka Math: Geometry Module 1, Topic E, Lesson 29– Special Lines in Triangles: Mid-segments Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) <u>TN Geometry Task: Midpoint Madness</u> See Mathematics, Instructional Resources, Geometry <u>TNTask Arc: How Should We Divide This</u> See Mathematics, Instructional Resources, Geometry, Task Arc: Investigating Coordinate Geometry	
	Properties of Quadrilater (Allow approximately 3 weeks for in	als and Coordinate Proof struction, review, and assessment)	
G-SRT.B.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	 Essential Question(s) What are polygons? Objective(s): Identify and name polygons Find perimeter, circumference, and area of two-dimensional figures 	<i>Textbook Lesson</i> Lesson 1.6 Two-Dimensional Figures	Vocabulary Parallelogram, vertex of a polygon, concave, convex, n-gon, equilateral polygon, regular polygon, equiangular polygon, regular polygon, perimeter, circumference, area
Domain: Modeling with Geometry (G.MG)	Essential Question(s)	Textbook Lesson	Vocabulary
Cluster: Apply geometric concepts in modeling situations	Is there a limit to the sum of the interior/exterior angles of a polygon why or why not?	Lesson 6.1 Angles of Polygons pp. 389-398	diagonal
■ <u>G-MG.A.1</u> Use geometric shapes, their measures, and their properties to describe objects .★	 Objective(s): Students will find and use the sum of the measures of the interior angles of a polygon 	Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) <u>Angle Sums</u>	Writing in Math p. 396 #52 Open ended - Sketch a polygon and find the sum of its interior angles. How many sides does a polygon with twice this interior angles sum have? Justify your answer

★(star) Modeling

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT & RESOURCES	
	 Find and use the sum of the measures of the exterior angles of a polygon 	Spreadsheet Lab p. 398 Illustrative Mathematics <u>Illustrative Mathematics: Sum of Angles in a</u> Polygon	
 Domain: Congruence (G.CO) Cluster: Prove geometric theorems <u>G-CO.C.11</u> Prove theorems about parallelograms. Domain: Expressing Geometric Properties with Equations (G.GPE) Cluster: Use coordinates to prove simple geometric theorems algebraically <u>G-GPE.B.2</u> Use coordinates to prove simple geometric theorems algebraically. 	 Essential Question(s) What can you conclude about the sides, angles, and diagonals of a parallelogram? Objective(s): Students will recognize and apply properties of the sides and angles of parallelograms Students will recognize and apply properties of parallelograms 	Textbook Lesson Lesson 6.2 Parallelograms, pp. 399-408 Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) Select appropriate tasks from GSE Analytic Geometry Unit 1: Similarity, Congruence and Proofs TN Task: Expanding Triangles See Mathematics, Instructional Resources, Geometry	Vocabulary parallelogram Writing in Math p. 406 # 43 Open ended - Provide a counterexample to show that parallelograms are not always congruent if their corresponding sides are congruent. (H.O.T. Problem)
 Domain: Congruence (G.CO) Cluster: Prove geometric theorems <u>G-CO.C.11</u> Prove theorems about parallelograms. Domain: Expressing Geometric Properties with Equations (G.GPE) Cluster: Use coordinates to prove simple geometric theorems algebraically <u>G-GPE.B.2</u> Use coordinates to prove simple geometric theorems algebraically. 	 Essential Question(s) What criteria can you use to prove that a quadrilateral is a parallelogram? Objective(s): Students will recognize the conditions that ensure a quadrilateral is a parallelogram. Students will prove that a set of points forms a parallelogram in the coordinate plane. 	Textbook Lesson Lesson 6.3 Tests for Parallelograms pp.409-417 Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) Select appropriate tasks from GSE Analytic Geometry Unit 1: Similarity, Congruence and Proofs	Writing in Math Journal Question: Are two parallelograms congruent if they both have four congruent angles? Justify your answer

★(star) Modeling

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT & RESOURCES	
 Domain: Congruence (G.CO) Cluster: Prove geometric theorems <u>G-CO.C.11</u> Prove theorems about parallelograms. Domain: Expressing Geometric Properties with Equations (G.GPE) Cluster: Use coordinates to prove simple geometric theorems algebraically <u>G-GPE.B.2</u> Use coordinates to prove simple geometric theorems algebraically. 	 Essential Question(s) How are the properties of rectangles, rhombi, and squares used to classify quadrilaterals? How can you use given conditions to prove that a quadrilateral is a rectangle, rhombus or square? Objective(s): Students will recognize and use the properties of rectangles Students will determine whether parallelograms are rectangles Students will recognize and apply the properties of rhombi and squares. Students will determine whether quadrilaterals are rectangles, rhombi, or squares. 	Graphing Technology Lab - Parallelograms p. 408 Whitebeard's Treasure Task Similarity, Congruence & Proofs TN Task: Park City Textbook Lessons Lesson 6.4 Rectangles, pp 419 - 425 Lesson 6.5 Rhombi and Squares, pp 426 - 434 Eureka Math Eureka Math: Geometry Module 1, Topic E, Lesson 28 – Properties of Parallelograms Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) TN Task: Getting in Shape TN Task: Lucio's Ride	Vocabulary rectangle, rhombi, and square.
 Domain: Modeling with Geometry (G.MG) Cluster: Apply geometric concepts in modeling situations <u>G-MG.A.2</u> Apply geometric methods to solve real-world problems ★. 	 Essential Question(s) What are the properties of kites and trapezoids? Objective(s): Students will apply properties of trapezoids Students will apply properties of kites 	<i>Textbook Lesson</i> Lesson 6.6 Trapezoids and Kites, pp.435-446 <i>Eureka Math</i> Eureka Math: Geometry Module 1, Topic D, Lesson 33 – Review of the Assumptions 1	Vocabulary trapezoid, bases, legs of a trapezoid, base angles, isosceles trapezoid, midsegment of a trapezoid Graphic Organizer Use a Venn Diagram to show the

SCS 2018/2019 Revised 9/5/18 16 of 18

Quarter 2

Geometry

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT & RESOURCES	
		Eureka Math: Geometry Module 1, Topic D, Lesson 34– Review of the Assumptions 2 Optional: Use the following resources to ensure that the intended outcome and level of rigor of the standards are met. Task(s) Properties of Different Quadrilaterals	relationship of the quadrilaterals you studied in Chapter 6

SCS 2018/2019 Revised 9/5/18 17 of 18

Quarter 2

Geometry

RESOURCE TOOLBOX				
Textbook Resources	Standards	Videos		
ConnectED Site - Textbook and Resources	Common Core Standards - Mathematics	Math TV Videos		
<u>Glencoe Video Lessons</u>	Common Core Standards - Mathematics Appendix A	The Teaching Channel		
Hotmath - solutions to odd problems	HS Flip Book with examples of each Standard	Khan Academy Videos (Geometry)		
	http://www.ccsstoolbox.org/			
Comprehensive Geometry Help:	http://insidemathematics.org/index.php/high-school-geometry	NWEA MAP		
Online Math Learning (Geometry)	http://www.livebinders.com/play/play/454480	Resources: https://teach.mapnwea.org/assist/he		
NCTM Illuminations	https://www.livebinders.com/play/play?id=464831	lp_map/ApplicationHelp.htm#UsingTestResults/		
	http://www.livebinders.com/play/play?id=571735	<u>MAPReportsFinder.htm</u> - Sign in and Click the Learning Continuum Tab – this resources will		
Tasks	Chicago Public Schools Framework and Tasks	help as you plan for intervention, and		
Edutoolbox (formerly TNCore) Tasks	Tennessee Academic Standards for Mathematics	differentiating small group instruction on the skill		
Inside Math Tasks Dan Meyer's Three-Act Math Tasks	Tennessee Assessment LiveBinder	you are currently teaching. (Four Ways to Impact		
Illustrative Math Tasks		Teaching with the Learning Continuum)		
UT Dana Center		https://support.nwea.org/khanrit - These Khan Academy lessons are aligned to		
GSE Analytic Geometry Unit 1: Similarity, Congruence		RIT scores.		
and Proofs				

SCS 2018/2019 Revised 9/5/18 18 of 18